Copied to
clipboard

G = C42.177D4order 128 = 27

159th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.177D4, C23.468C24, C22.1902- 1+4, (C2×Q8)⋊10Q8, C4.60(C22⋊Q8), C428C4.34C2, C2.19(Q83Q8), C4.75(C4.4D4), (C22×C4).102C23, (C2×C42).569C22, C22.319(C22×D4), C22.109(C22×Q8), (C22×Q8).438C22, C2.C42.204C22, C23.83C23.14C2, C23.67C23.42C2, C2.26(C23.38C23), C2.40(C22.50C24), (C4×C4⋊C4).68C2, (C2×C4×Q8).36C2, (C2×C4⋊Q8).35C2, (C2×C4).56(C2×Q8), (C2×C4).834(C2×D4), C2.36(C2×C22⋊Q8), C2.26(C2×C4.4D4), (C2×C4).827(C4○D4), (C2×C4⋊C4).315C22, C22.344(C2×C4○D4), SmallGroup(128,1300)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.177D4
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.177D4
C1C23 — C42.177D4
C1C23 — C42.177D4
C1C23 — C42.177D4

Generators and relations for C42.177D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b2c-1 >

Subgroups: 388 in 234 conjugacy classes, 116 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C4⋊Q8, C22×Q8, C22×Q8, C4×C4⋊C4, C428C4, C23.67C23, C23.83C23, C2×C4×Q8, C2×C4⋊Q8, C42.177D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C4.4D4, C22×D4, C22×Q8, C2×C4○D4, 2- 1+4, C2×C22⋊Q8, C2×C4.4D4, C23.38C23, C22.50C24, Q83Q8, C42.177D4

Smallest permutation representation of C42.177D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 15 44 50)(2 16 41 51)(3 13 42 52)(4 14 43 49)(5 36 37 127)(6 33 38 128)(7 34 39 125)(8 35 40 126)(9 22 17 46)(10 23 18 47)(11 24 19 48)(12 21 20 45)(25 57 54 30)(26 58 55 31)(27 59 56 32)(28 60 53 29)(61 65 72 100)(62 66 69 97)(63 67 70 98)(64 68 71 99)(73 80 111 114)(74 77 112 115)(75 78 109 116)(76 79 110 113)(81 101 108 88)(82 102 105 85)(83 103 106 86)(84 104 107 87)(89 117 124 96)(90 118 121 93)(91 119 122 94)(92 120 123 95)
(1 63 55 10)(2 69 56 17)(3 61 53 12)(4 71 54 19)(5 106 80 91)(6 82 77 121)(7 108 78 89)(8 84 79 123)(9 41 62 27)(11 43 64 25)(13 65 29 21)(14 99 30 48)(15 67 31 23)(16 97 32 46)(18 44 70 26)(20 42 72 28)(22 51 66 59)(24 49 68 57)(33 102 112 93)(34 88 109 117)(35 104 110 95)(36 86 111 119)(37 83 114 122)(38 105 115 90)(39 81 116 124)(40 107 113 92)(45 52 100 60)(47 50 98 58)(73 94 127 103)(74 118 128 85)(75 96 125 101)(76 120 126 87)
(1 34 42 127)(2 33 43 126)(3 36 44 125)(4 35 41 128)(5 50 39 13)(6 49 40 16)(7 52 37 15)(8 51 38 14)(9 102 19 87)(10 101 20 86)(11 104 17 85)(12 103 18 88)(21 83 47 108)(22 82 48 107)(23 81 45 106)(24 84 46 105)(25 76 56 112)(26 75 53 111)(27 74 54 110)(28 73 55 109)(29 80 58 116)(30 79 59 115)(31 78 60 114)(32 77 57 113)(61 94 70 117)(62 93 71 120)(63 96 72 119)(64 95 69 118)(65 122 98 89)(66 121 99 92)(67 124 100 91)(68 123 97 90)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,34,42,127)(2,33,43,126)(3,36,44,125)(4,35,41,128)(5,50,39,13)(6,49,40,16)(7,52,37,15)(8,51,38,14)(9,102,19,87)(10,101,20,86)(11,104,17,85)(12,103,18,88)(21,83,47,108)(22,82,48,107)(23,81,45,106)(24,84,46,105)(25,76,56,112)(26,75,53,111)(27,74,54,110)(28,73,55,109)(29,80,58,116)(30,79,59,115)(31,78,60,114)(32,77,57,113)(61,94,70,117)(62,93,71,120)(63,96,72,119)(64,95,69,118)(65,122,98,89)(66,121,99,92)(67,124,100,91)(68,123,97,90)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,34,42,127)(2,33,43,126)(3,36,44,125)(4,35,41,128)(5,50,39,13)(6,49,40,16)(7,52,37,15)(8,51,38,14)(9,102,19,87)(10,101,20,86)(11,104,17,85)(12,103,18,88)(21,83,47,108)(22,82,48,107)(23,81,45,106)(24,84,46,105)(25,76,56,112)(26,75,53,111)(27,74,54,110)(28,73,55,109)(29,80,58,116)(30,79,59,115)(31,78,60,114)(32,77,57,113)(61,94,70,117)(62,93,71,120)(63,96,72,119)(64,95,69,118)(65,122,98,89)(66,121,99,92)(67,124,100,91)(68,123,97,90) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,15,44,50),(2,16,41,51),(3,13,42,52),(4,14,43,49),(5,36,37,127),(6,33,38,128),(7,34,39,125),(8,35,40,126),(9,22,17,46),(10,23,18,47),(11,24,19,48),(12,21,20,45),(25,57,54,30),(26,58,55,31),(27,59,56,32),(28,60,53,29),(61,65,72,100),(62,66,69,97),(63,67,70,98),(64,68,71,99),(73,80,111,114),(74,77,112,115),(75,78,109,116),(76,79,110,113),(81,101,108,88),(82,102,105,85),(83,103,106,86),(84,104,107,87),(89,117,124,96),(90,118,121,93),(91,119,122,94),(92,120,123,95)], [(1,63,55,10),(2,69,56,17),(3,61,53,12),(4,71,54,19),(5,106,80,91),(6,82,77,121),(7,108,78,89),(8,84,79,123),(9,41,62,27),(11,43,64,25),(13,65,29,21),(14,99,30,48),(15,67,31,23),(16,97,32,46),(18,44,70,26),(20,42,72,28),(22,51,66,59),(24,49,68,57),(33,102,112,93),(34,88,109,117),(35,104,110,95),(36,86,111,119),(37,83,114,122),(38,105,115,90),(39,81,116,124),(40,107,113,92),(45,52,100,60),(47,50,98,58),(73,94,127,103),(74,118,128,85),(75,96,125,101),(76,120,126,87)], [(1,34,42,127),(2,33,43,126),(3,36,44,125),(4,35,41,128),(5,50,39,13),(6,49,40,16),(7,52,37,15),(8,51,38,14),(9,102,19,87),(10,101,20,86),(11,104,17,85),(12,103,18,88),(21,83,47,108),(22,82,48,107),(23,81,45,106),(24,84,46,105),(25,76,56,112),(26,75,53,111),(27,74,54,110),(28,73,55,109),(29,80,58,116),(30,79,59,115),(31,78,60,114),(32,77,57,113),(61,94,70,117),(62,93,71,120),(63,96,72,119),(64,95,69,118),(65,122,98,89),(66,121,99,92),(67,124,100,91),(68,123,97,90)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim11111112224
type++++++++--
imageC1C2C2C2C2C2C2D4Q8C4○D42- 1+4
kernelC42.177D4C4×C4⋊C4C428C4C23.67C23C23.83C23C2×C4×Q8C2×C4⋊Q8C42C2×Q8C2×C4C22
# reps112641144122

Matrix representation of C42.177D4 in GL6(𝔽5)

130000
140000
004000
000400
000020
000003
,
420000
410000
001000
000100
000010
000001
,
200000
020000
000100
004000
000001
000010
,
400000
410000
000400
004000
000003
000030

G:=sub<GL(6,GF(5))| [1,1,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[4,4,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,4,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0] >;

C42.177D4 in GAP, Magma, Sage, TeX

C_4^2._{177}D_4
% in TeX

G:=Group("C4^2.177D4");
// GroupNames label

G:=SmallGroup(128,1300);
// by ID

G=gap.SmallGroup(128,1300);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,568,758,723,268,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽