p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.177D4, C23.468C24, C22.1902- 1+4, (C2×Q8)⋊10Q8, C4.60(C22⋊Q8), C42⋊8C4.34C2, C2.19(Q8⋊3Q8), C4.75(C4.4D4), (C22×C4).102C23, (C2×C42).569C22, C22.319(C22×D4), C22.109(C22×Q8), (C22×Q8).438C22, C2.C42.204C22, C23.83C23.14C2, C23.67C23.42C2, C2.26(C23.38C23), C2.40(C22.50C24), (C4×C4⋊C4).68C2, (C2×C4×Q8).36C2, (C2×C4⋊Q8).35C2, (C2×C4).56(C2×Q8), (C2×C4).834(C2×D4), C2.36(C2×C22⋊Q8), C2.26(C2×C4.4D4), (C2×C4).827(C4○D4), (C2×C4⋊C4).315C22, C22.344(C2×C4○D4), SmallGroup(128,1300)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.177D4
G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b2c-1 >
Subgroups: 388 in 234 conjugacy classes, 116 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C4⋊Q8, C22×Q8, C22×Q8, C4×C4⋊C4, C42⋊8C4, C23.67C23, C23.83C23, C2×C4×Q8, C2×C4⋊Q8, C42.177D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C4.4D4, C22×D4, C22×Q8, C2×C4○D4, 2- 1+4, C2×C22⋊Q8, C2×C4.4D4, C23.38C23, C22.50C24, Q8⋊3Q8, C42.177D4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 15 44 50)(2 16 41 51)(3 13 42 52)(4 14 43 49)(5 36 37 127)(6 33 38 128)(7 34 39 125)(8 35 40 126)(9 22 17 46)(10 23 18 47)(11 24 19 48)(12 21 20 45)(25 57 54 30)(26 58 55 31)(27 59 56 32)(28 60 53 29)(61 65 72 100)(62 66 69 97)(63 67 70 98)(64 68 71 99)(73 80 111 114)(74 77 112 115)(75 78 109 116)(76 79 110 113)(81 101 108 88)(82 102 105 85)(83 103 106 86)(84 104 107 87)(89 117 124 96)(90 118 121 93)(91 119 122 94)(92 120 123 95)
(1 63 55 10)(2 69 56 17)(3 61 53 12)(4 71 54 19)(5 106 80 91)(6 82 77 121)(7 108 78 89)(8 84 79 123)(9 41 62 27)(11 43 64 25)(13 65 29 21)(14 99 30 48)(15 67 31 23)(16 97 32 46)(18 44 70 26)(20 42 72 28)(22 51 66 59)(24 49 68 57)(33 102 112 93)(34 88 109 117)(35 104 110 95)(36 86 111 119)(37 83 114 122)(38 105 115 90)(39 81 116 124)(40 107 113 92)(45 52 100 60)(47 50 98 58)(73 94 127 103)(74 118 128 85)(75 96 125 101)(76 120 126 87)
(1 34 42 127)(2 33 43 126)(3 36 44 125)(4 35 41 128)(5 50 39 13)(6 49 40 16)(7 52 37 15)(8 51 38 14)(9 102 19 87)(10 101 20 86)(11 104 17 85)(12 103 18 88)(21 83 47 108)(22 82 48 107)(23 81 45 106)(24 84 46 105)(25 76 56 112)(26 75 53 111)(27 74 54 110)(28 73 55 109)(29 80 58 116)(30 79 59 115)(31 78 60 114)(32 77 57 113)(61 94 70 117)(62 93 71 120)(63 96 72 119)(64 95 69 118)(65 122 98 89)(66 121 99 92)(67 124 100 91)(68 123 97 90)
G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,34,42,127)(2,33,43,126)(3,36,44,125)(4,35,41,128)(5,50,39,13)(6,49,40,16)(7,52,37,15)(8,51,38,14)(9,102,19,87)(10,101,20,86)(11,104,17,85)(12,103,18,88)(21,83,47,108)(22,82,48,107)(23,81,45,106)(24,84,46,105)(25,76,56,112)(26,75,53,111)(27,74,54,110)(28,73,55,109)(29,80,58,116)(30,79,59,115)(31,78,60,114)(32,77,57,113)(61,94,70,117)(62,93,71,120)(63,96,72,119)(64,95,69,118)(65,122,98,89)(66,121,99,92)(67,124,100,91)(68,123,97,90)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,15,44,50)(2,16,41,51)(3,13,42,52)(4,14,43,49)(5,36,37,127)(6,33,38,128)(7,34,39,125)(8,35,40,126)(9,22,17,46)(10,23,18,47)(11,24,19,48)(12,21,20,45)(25,57,54,30)(26,58,55,31)(27,59,56,32)(28,60,53,29)(61,65,72,100)(62,66,69,97)(63,67,70,98)(64,68,71,99)(73,80,111,114)(74,77,112,115)(75,78,109,116)(76,79,110,113)(81,101,108,88)(82,102,105,85)(83,103,106,86)(84,104,107,87)(89,117,124,96)(90,118,121,93)(91,119,122,94)(92,120,123,95), (1,63,55,10)(2,69,56,17)(3,61,53,12)(4,71,54,19)(5,106,80,91)(6,82,77,121)(7,108,78,89)(8,84,79,123)(9,41,62,27)(11,43,64,25)(13,65,29,21)(14,99,30,48)(15,67,31,23)(16,97,32,46)(18,44,70,26)(20,42,72,28)(22,51,66,59)(24,49,68,57)(33,102,112,93)(34,88,109,117)(35,104,110,95)(36,86,111,119)(37,83,114,122)(38,105,115,90)(39,81,116,124)(40,107,113,92)(45,52,100,60)(47,50,98,58)(73,94,127,103)(74,118,128,85)(75,96,125,101)(76,120,126,87), (1,34,42,127)(2,33,43,126)(3,36,44,125)(4,35,41,128)(5,50,39,13)(6,49,40,16)(7,52,37,15)(8,51,38,14)(9,102,19,87)(10,101,20,86)(11,104,17,85)(12,103,18,88)(21,83,47,108)(22,82,48,107)(23,81,45,106)(24,84,46,105)(25,76,56,112)(26,75,53,111)(27,74,54,110)(28,73,55,109)(29,80,58,116)(30,79,59,115)(31,78,60,114)(32,77,57,113)(61,94,70,117)(62,93,71,120)(63,96,72,119)(64,95,69,118)(65,122,98,89)(66,121,99,92)(67,124,100,91)(68,123,97,90) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,15,44,50),(2,16,41,51),(3,13,42,52),(4,14,43,49),(5,36,37,127),(6,33,38,128),(7,34,39,125),(8,35,40,126),(9,22,17,46),(10,23,18,47),(11,24,19,48),(12,21,20,45),(25,57,54,30),(26,58,55,31),(27,59,56,32),(28,60,53,29),(61,65,72,100),(62,66,69,97),(63,67,70,98),(64,68,71,99),(73,80,111,114),(74,77,112,115),(75,78,109,116),(76,79,110,113),(81,101,108,88),(82,102,105,85),(83,103,106,86),(84,104,107,87),(89,117,124,96),(90,118,121,93),(91,119,122,94),(92,120,123,95)], [(1,63,55,10),(2,69,56,17),(3,61,53,12),(4,71,54,19),(5,106,80,91),(6,82,77,121),(7,108,78,89),(8,84,79,123),(9,41,62,27),(11,43,64,25),(13,65,29,21),(14,99,30,48),(15,67,31,23),(16,97,32,46),(18,44,70,26),(20,42,72,28),(22,51,66,59),(24,49,68,57),(33,102,112,93),(34,88,109,117),(35,104,110,95),(36,86,111,119),(37,83,114,122),(38,105,115,90),(39,81,116,124),(40,107,113,92),(45,52,100,60),(47,50,98,58),(73,94,127,103),(74,118,128,85),(75,96,125,101),(76,120,126,87)], [(1,34,42,127),(2,33,43,126),(3,36,44,125),(4,35,41,128),(5,50,39,13),(6,49,40,16),(7,52,37,15),(8,51,38,14),(9,102,19,87),(10,101,20,86),(11,104,17,85),(12,103,18,88),(21,83,47,108),(22,82,48,107),(23,81,45,106),(24,84,46,105),(25,76,56,112),(26,75,53,111),(27,74,54,110),(28,73,55,109),(29,80,58,116),(30,79,59,115),(31,78,60,114),(32,77,57,113),(61,94,70,117),(62,93,71,120),(63,96,72,119),(64,95,69,118),(65,122,98,89),(66,121,99,92),(67,124,100,91),(68,123,97,90)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 4I | ··· | 4Z | 4AA | 4AB | 4AC | 4AD |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | C4○D4 | 2- 1+4 |
kernel | C42.177D4 | C4×C4⋊C4 | C42⋊8C4 | C23.67C23 | C23.83C23 | C2×C4×Q8 | C2×C4⋊Q8 | C42 | C2×Q8 | C2×C4 | C22 |
# reps | 1 | 1 | 2 | 6 | 4 | 1 | 1 | 4 | 4 | 12 | 2 |
Matrix representation of C42.177D4 ►in GL6(𝔽5)
1 | 3 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 2 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 3 | 0 |
G:=sub<GL(6,GF(5))| [1,1,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[4,4,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,4,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0] >;
C42.177D4 in GAP, Magma, Sage, TeX
C_4^2._{177}D_4
% in TeX
G:=Group("C4^2.177D4");
// GroupNames label
G:=SmallGroup(128,1300);
// by ID
G=gap.SmallGroup(128,1300);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,568,758,723,268,675,80]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations